Part Number Hot Search : 
24N100 AT1743 GS9035C CHUMH9PT TCR2EF31 GF6968AD EUP25 USP9728
Product Description
Full Text Search
 

To Download IR2132SPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  features ? floating channel designed for bootstrap operation fully operational to +600v tolerant to negative transient voltage dv/dt immune ? gate drive supply range from 10 to 20v ? undervoltage lockout for all channels ? over-current shutdown turns off all six drivers ? independent half-bridge drivers ? matched propagation delay for all channels ? 2.5v logic compatible ? outputs out of phase with inputs ? cross-conduction prevention logic ? also available lead-free 3-phase bridge driver v offset 600v max. i o +/- 200 ma / 420 ma v out 10 - 20v t on/off (typ.) 675 & 425 ns deadtime (typ.) 2.5 s (ir2130) 0.8 s (ir2132) data sheet no. pd60019 rev.p ir2130/ir2132(j)(s) & ( pbf) description the ir2130/ir2132(j)(s) is a high voltage, high speed power mosfet and igbt driver with three indepen- dent high and low side referenced output channels. pro- prietary hvic technology enables ruggedized monolithic construction. logic inputs are compatible with cmos or lsttl outputs, down to 2.5v logic. a ground-referenced op erational amplifier provides analog feedback of bridge cur rent via an external cur- rent sense resistor. a current trip function which termi- nates all six outputs is also de rived from this resistor. an open drain fault signal indicates if an over-cur- rent or undervoltage shutdown has occurred. the output drivers feature a high pulse cur rent buffer stage designed for minimum driver cross-con duction. propagation delays are matched to simplify use at high frequencies. the floating channels can be used to drive n- channel power mosfets or igbts in the high side configuration which operate up to 600 volts. www.irf.com 1 (refer to lead assignments for correct pin configuration). this/these diagram(s) show electrical connections only. please refe r to our application notes and designtips for proper circuit board layout. typical connection product summary packages 28-lead pdip 28-lead soic 44-lead plcc w/o 12 leads
ir2130/ir2132(j)(s) & ( pbf) 2 www.irf.com symbol definition min. max. units v b1,2,3 high side floating supply voltage -0.3 625 v s1,2,3 high side floating offset voltage v b1,2,3 - 25 v b1,2,3 + 0.3 v ho1,2,3 high side floating output voltage v s1,2,3 - 0.3 v b1,2,3 + 0.3 v cc low side and logic fixed supply voltage -0.3 25 v ss logic ground v cc - 25 v cc + 0.3 v lo1,2,3 low side output voltage -0.3 v cc + 0.3 v in logic input voltage ( hin1,2,3 , lin1,2,3 & itrip) v ss - 0.3 (v ss + 15) or (v cc + 0.3) whichever is lower v flt fault output voltage v ss - 0.3 v cc + 0.3 v cao operational amplifier output voltage v ss - 0.3 v cc + 0.3 v ca- operational amplifier inverting input voltage v ss - 0.3 v cc + 0.3 dv s /dt allowable offset supply voltage transient ? 50 v/ns p d package power dissipation @ t a  +25 c (28 lead dip) ? 1.5 (28 lead soic) ? 1.6 w (44 lead plcc) ? 2.0 rth ja thermal resistance, junction to ambient (28 lead dip) ? 83 (28 lead soic) ? 78 c/w (44 lead plcc) ? 63 t j junction temperature ? 150 t s storage temperature -55 150 t l lead temperature (soldering, 10 seconds) ? 300 absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage param- eters are absolute voltages referenced to v s0 . the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. additional information is shown in figures 50 through 53. note 1: logic operational for v s of (v s0 - 5v) to (v s0 + 600v). logic state held for v s of (v s0 - 5v) to (v s0 - v bs ). (please refer to the design tip dt97-3 for more details). note 2: all input pins, ca- and cao pins are internally clamped with a 5.2v zener diode. v symbol definition min. max. units v b1,2,3 high side floating supply voltage v s1,2,3 + 10 v s1,2,3 + 20 v s1,2,3 high side floating offset voltage note 1 600 v ho1,2,3 high side floating output voltage v s1,2,3 v b1,2,3 v cc low side and logic fixed supply voltage 10 20 v ss logic ground -5 5 v lo1,2,3 low side output voltage 0 v cc v in logic input voltage ( hin1,2,3 , lin1,2,3 & itrip) v ss v ss + 5 v flt fault output voltage v ss v cc v cao operational amplifier output voltage v ss v ss + 5 v ca- operational amplifier inverting input voltage v ss v ss + 5 t a ambient temperature -40 125 c v recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. all voltage parameters are absolute voltages referenced to v s0 . the v s offset rating is tested with all supplies biased at 15v different ial. typical ratings at other bias conditions are shown in figure 54. c
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 3 symbol definition figure min. typ. max. units test conditions v ih logic ?0? input voltage (out = lo) 21 2.2 ? ? v il logic ?1? input voltage (out = hi) 22 ? ? 0.8 v it,th+ itrip input positive going threshold 23 400 490 580 v oh high level output voltage, v bias - v o 24 ? ? 100 v in = 0v, i o = 0a v ol low level output voltage, v o 25 ? ? 100 v in = 5v, i o = 0a i lk offset supply leakage current 26 ? ? 50 v b = v s = 600v i qbs quiescent v bs supply current 27 ? 15 30 v in = 0v or 5v i qcc quiescent v cc supply current 28 ? 3.0 4.0 ma v in = 0v or 5v i in+ logic ?1? input bias current (out = hi) 29 ? 450 650 v in = 0v i in- logic ?0? input bias current (out = lo) 30 ? 225 400 v in = 5v i itrip+ ?high? itrip bias current 31 ? 75 150 itrip = 5v i itrip- ?low? itrip bias current 32 ? ? 100 na itrip = 0v v bsuv+ v bs supply undervoltage positive going 33 7.5 8.35 9.2 threshold v bsuv- v bs supply undervoltage negative going 34 7.1 7.95 8.8 threshold v ccuv+ v cc supply undervoltage positive going 35 8.3 9.0 9.7 threshold v ccuv- v cc supply undervoltage negative going 36 8.0 8.7 9.4 threshold r on,flt fault low on-resistance 37 ? 55 75  symbol definition figure min. typ. max. units test conditions t on turn-on propagation delay 11 500 675 850 t off turn-off propagation delay 12 300 425 550 v in = 0 & 5v t r turn-on rise time 13 ? 80 125 v s1,2,3 = 0 to 600v t f turn-off fall time 14 ? 35 55 t itrip itrip to output shutdown prop. delay 15 400 660 920 v in , v itrip = 0 & 5v t bl itrip blanking time ? ? 400 ? v itrip = 1v t flt itrip to fault indication delay 16 335 590 845 v in , v itrip = 0 & 5v t flt,in input filter time (all six inputs) ? ? 310 ? v in = 0 & 5v t fltclr lin1,2,3 to fault clear time 17 6.0 9.0 12.0 v in , v itrip = 0 & 5v dt deadtime (ir2130) 18 1.3 2.5 3.7 (ir2132) 18 0.4 0.8 1.2 sr+ operational amplifier slew rate (+) 19 4.4 6.2 ? sr- operational amplifier slew rate (-) 20 2.4 3.2 ? dynamic electrical characteristics v bias (v cc , v bs1,2,3 ) = 15v, v s0,1,2,3 = v ss , c l = 1000 pf and t a = 25 c unless otherwise specified. the dynamic electrical characteristics are defined in figures 3 through 5. static electrical characteristics v bias (v cc , v bs1,2,3 ) = 15v, v s0,1,2,3 = v ss and t a = 25 c unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six logic input leads: hin1,2,3 & lin1,2,3 . the v o and i o parameters are referenced to v s0,1,2,3 and are applicable to the respective output leads: ho1,2,3 or lo1,2,3. v v/ s s ns v mv a a v in = 0 & 5v note: for high side pwm, hin pulse width must be  1.5 sec
ir2130/ir2132(j)(s) & ( pbf) 4 www.irf.com symbol definition figure min. typ. max. units test conditions i o+ output high short circuit pulsed current 38 200 250 ? v o = 0v, v in = 0v pw  10 s i o- output low short circuit pulsed current 39 420 500 ? v o = 15v, v in = 5v pw  10 s v os operational amplifer input offset voltage 40 ? ? 30 mv v s0 = v ca- = 0.2v i ca- ca- input bais current 41 ? ? 4.0 na v ca- = 2.5v cmrr op. amp. common mode rejection ratio 42 60 80 ? v s0 =v ca- =0.1v & 5v psrr op. amp. power supply rejection ratio 43 55 75 ? v s0 = v ca- = 0.2v v cc = 10v & 20v v oh,amp op. amp. high level output voltage 44 5.0 5.2 5.4 v v ca- = 0v, v s0 = 1v v ol,amp op. amp. low level output voltage 45 ? ? 20 mv v ca- = 1v, v s0 = 0v i src,amp op. amp. output source current 46 2.3 4.0 ? v ca- = 0v, v s0 = 1v v cao = 4v i src,amp op. amp. output sink current 47 1.0 2.1 ? v ca- = 1v, v s0 = 0v v cao = 2v i o+,amp operational amplifier output high short 48 ? 4.5 6.5 v ca- = 0v, v s0 = 5v circuit current v cao = 0v i o-,amp operational amplifier output low short 49 ? 3.2 5.2 v ca- = 5v, v s0 = 0v circuit current v cao = 5v static electrical characteristics -- continued v bias (v cc , v bs1,2,3 ) = 15v, v s0,1,2,3 = v ss and t a = 25 c unless otherwise specified. the v in , v th and i in parameters are referenced to v ss and are applicable to all six logic input leads: hin1,2,3 & lin1,2,3 . the v o and i o parameters are referenced to v s0,1,2,3 and are applicable to the respective output leads: ho1,2,3 or lo1,2,3. ma ma lead assignments 28 lead pdip 44 lead plcc w/o 12 leads 28 lead soic (wide body) ir2130 / ir2132 ir2130j / ir2132j ir2130s / ir2132s part number db
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 5 functional block diagram symbol description hin1,2,3 logic inputs for high side gate driver outputs (ho1,2,3), out of phase lin1,2,3 logic inputs for low side gate driver output (lo1,2,3), out of phase fault indicates over-current or undervoltage lockout (low side) has occurred, negative logic v cc low side and logic fixed supply itrip input for over-current shutdown cao output of current amplifier ca- negative input of current amplifier v ss logic ground v b1,2,3 high side floating supplies ho1,2,3 high side gate drive outputs v s1,2,3 high side floating supply returns lo1,2,3 low side gate drive outputs v s0 low side return and positive input of current amplifier lead definitions
ir2130/ir2132(j)(s) & ( pbf) 6 www.irf.com figure 3. deadtime waveform definitions figure 4. input/output switching time waveform definitions figure 1. input/output timing diagram figure 2. floating supply voltage transient test circuit lo1,2,3 ho1,2,3 itrip dt dt t r t on t off t f 50% 50% 90% 90% 10% 10% 50% 50% 50% 50% fault lin1,2,3 hin1,2,3 hin1,2,3 lin1,2,3 ho1,2,3 lo1,2,3 hin1,2,3 lin1,2,3 lo1,2,3 ho1,2,3 <50 v/ns
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 7 figure 5. overcurrent shutdown switching time waveform definitions figure 6. diagnostic feedback operational amplifier circuit 50% 50% 50% 50% 50% t flt t itrip t fltclr fault lin1,2,3 itrip lo1,2,3 cao v s0 ca- v ss v cc v ss + - u t in,fil t in,fil on on on off off off high low hin/lin ho/lo figure 5.5 input filter function
ir2130/ir2132(j)(s) & ( pbf) 8 www.irf.com figure 7. operational amplifier slew rate measurement figure 8. operational amplifier input offset voltage measurement v cao 21 - 0.2v v os = 90% 10% 0v 3v  t1  t2  v  v  t1 sr+ =  v  t2 sr- = cao v s0 ca- v ss v cc 15v 50 pf + - 0v 3v cao + v s0 v cc v ss 0.2v 1k 20k ca- 15v + - measure v cao1 at v s0 = 0.1v v cao2 at v s0 = 5v cmrr = -20 * log figure 9. operational amplifier common mode rejection ratio measurements (v cao1 -0.1v) - (v cao2 -5v) 4.9v (db) cao v s0 ca- v ss v cc 15v - + measure v cao1 at v cc = 10v v cao2 at v cc = 20v psrr = -20 * log v cao1 - v cao2 figure 10. operational amplifier power supply rejection ratio measurements (10v) (21) cao + v s0 v cc v ss 1k 20k ca- + - 0.2v
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 9 figure 11b. turn-on time vs. supply voltage figure 11a. turn-on time vs. temperature 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) turn-on delay time (s) typ. min. max. 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v bias supply voltage (v) turn-on delay time (s) max. typ. min. figure 12a. turn-off time vs. temperature 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) turn-off delay time (s) typ. min. max. figure 12b. turn-off time vs. supply voltage 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) turn-off delay time (s) max. typ. min. 0.00 0.30 0.60 0.90 1.20 1.50 0123456 ty p. max figure 11c. turn-on time vs. voltage turn-on time ( s) input voltage (v) figure 12c. turn-off time vs. input voltage turn-off time ( s) input voltage (v) 0.00 0.30 0.60 0.90 1.20 1.50 0123456 max ty p min.
ir2130/ir2132(j)(s) & ( pbf) 10 www.irf.com figure 14a. turn-off fall time vs. temperature figure 14b. turn-off fall time vs. voltage 0 25 50 75 100 125 -50 -25 0 25 50 75 100 125 temperature (c) turn-off fall time (ns) typ. max. 0 25 50 75 100 125 10 12 14 16 18 20 v bias supply voltage (v) turn-off fall time (ns) max. typ. figure 15b. itrip to output shutdown time vs. voltage figure 15a. itrip to output shutdown time vs. temperature 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) itrip to output shutdown delay time (s) typ. min. max. 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v bias supply voltage (v) itrip to output shutdown delay time (s) max. typ. min. figure 13a. turn-on rise time vs. temperature figure 13b. turn-on rise time vs. voltage 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) turn-on rise time (ns) typ. max. 0 50 100 150 200 250 10 12 14 16 18 20 v bias supply voltage (v) turn-on rise time (ns) max. typ.
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 11 figure 16a. itrip to fault indication time vs. temperature figure 16b. itrip to fault indication time vs. voltage 0.00 0.30 0.60 0.90 1.20 1.50 10 12 14 16 18 20 v cc supply voltage (v) itrip to fault indication delay time (s) max. typ. min. 0.00 0.30 0.60 0.90 1.20 1.50 -50 -25 0 25 50 75 100 125 temperature (c) itrip to fault indication delay time (s) typ. min. max. figure 17a. lin1,2,3 to fault clear time vs. temperature figure 17b. lin1,2,3 to fault clear time vs. voltage 0.0 5.0 10.0 15.0 20.0 25.0 -50 -25 0 25 50 75 100 125 temperature (c) lin1,2,3 to fault clear time (s) typ. min. max. 0.0 5.0 10.0 15.0 20.0 25.0 10 12 14 16 18 20 v cc supply voltage (v) lin1,2,3 to fault clear time (s) max. typ. min. figure 18a. deadtime vs. temperature (ir2130) figure 18b. deadtime vs. voltage (ir2130) 0.00 1.50 3.00 4.50 6.00 7.50 -50 -25 0 25 50 75 100 125 temperature (c) deadtime (s) typ. min. max. 0.00 1.50 3.00 4.50 6.00 7.50 10 12 14 16 18 20 v bias supply voltage (v) deadtime (s) max. typ. min.
ir2130/ir2132(j)(s) & ( pbf) 12 www.irf.com figure 18c. deadtime vs. temperature (ir2132) figure 18d. deadtime vs. voltage (ir2132) 0.00 0.50 1.00 1.50 2.00 2.50 -50 -25 0 25 50 75 100 125 temperature (c) deadtime (s) typ. min. max. 0.00 0.50 1.00 1.50 2.00 2.50 10 12 14 16 18 20 v bias supply voltage (v) deadtime (s) max. typ. min. figure 19a. amplifier slew rate (+) vs. temperature figure 19b. amplifier slew rate (+) vs. voltage 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) amplifier slew rate + (v/s) typ. min. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) amplifier slew rate + (v/s) min. typ. figure 20a. amplifier slew rate (-) vs. temperature figure 20b. amplifier slew rate (-) vs. voltage 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) amplifier slew rate - (v/s) typ. min. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) amplifier slew rate - (v/s) min. typ.
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 13 figure 22a. l ogic ?1? input threshold vs. temperature figure 22b. l ogic ?1? input threshold vs. voltage 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) logic "1" input threshold (v) max. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) logic "1" input threshold (v) max. figure 23a. itrip input positive going threshold vs. temperature figure 23b. itrip input positive going threshold vs. voltage 0 150 300 450 600 750 -50 -25 0 25 50 75 100 125 temperature (c) itrip input positive going threshold (mv) typ. min. max. 0 150 300 450 600 750 10 12 14 16 18 20 v cc supply voltage (v) itrip input positive going threshold (mv) max. typ. min. figure 21a. l ogic ?0? input threshold vs. temperature figure 20b. logic ?0? input threshold vs. voltage 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) logic "0" input threshold (v) min. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) logic "0" input threshold (v) min.
ir2130/ir2132(j)(s) & ( pbf) 14 www.irf.com figure 26a. offset supply leakage current vs. temperature figure 26b. offset supply leakage current vs. voltage 0 100 200 300 400 500 0 100 200 300 400 500 600 v b boost voltage (v) offset supply leakage current (a) max. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) offset supply leakage current (a) max. figure 25a. low level output vs. temperature figure 25b. low l evel output vs. voltage 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) low level output voltage (v) max. 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) low level output voltage (v) max. figure 24a. high level output vs. temperature figure 24b. high level output vs. voltage 0.00 0.20 0.40 0.60 0.80 1.00 -50 -25 0 25 50 75 100 125 temperature (c) high level output voltage (v) max. 0.00 0.20 0.40 0.60 0.80 1.00 10 12 14 16 18 20 v bias supply voltage (v) high level output voltage (v) max.
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 15 figure 29a. l ogic ?1? input current vs. temperature figure 29a. l ogic ?1? input current vs. voltage 0.00 0.25 0.50 0.75 1.00 1.25 -50 -25 0 25 50 75 100 125 temperature (c) logic "1" input bias current (ma) typ. max. 0.00 0.25 0.50 0.75 1.00 1.25 10 12 14 16 18 20 v cc supply voltage (v) logic "1" input bias current (ma) max. typ. figure 28a. v cc supply current vs. temperature figure 28b. v cc supply current vs. voltage 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc supply current (ma) typ. max. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) v cc supply current (ma) max. typ. figure 27a. v bs supply current vs. temperature figure 27b. v bs supply current vs. voltage 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) v bs supply current (a) typ. max. 0 20 40 60 80 100 10 12 14 16 18 20 v bs floating supply voltage (v) v bs supply current (a) max. typ.
ir2130/ir2132(j)(s) & ( pbf) 16 www.irf.com figure 30a. l ogic ?0? input current vs. temperature figure 30b. l ogic ?0? input current vs. voltage figure 32a. ?low? itrip current vs. temperature figure 32b. ?low? itrip current vs. voltage 0.00 0.25 0.50 0.75 1.00 1.25 -50 -25 0 25 50 75 100 125 temperature (c) logic "0" input bias current (ma) typ. max. 0.00 0.25 0.50 0.75 1.00 1.25 10 12 14 16 18 20 v cc supply voltage (v) logic "0" input bias current (ma) max. typ. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) "low" itrip bias current (na) max. 0 100 200 300 400 500 10 12 14 16 18 20 v cc supply voltage (v) "low" itrip bias current (a) max. figure 31a. ?high? itrip current vs. temperature figure 31b. ?high? itrip current vs. voltage 0 100 200 300 400 500 10 12 14 16 18 20 v cc supply voltage (v) "high" itrip bias current (a) max. typ. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) "high" itrip bias current (a) typ. max.
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 17 figure 33. v bs undervoltage (+) vs. temperature figure 34. v bs undervoltage (-) vs. temperature figure 37a. fault low on resistance vs. temperature figure 37b. fault low on resistance vs. voltage 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v bs undervoltage lockout + (v) typ. min. max. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v bs undervoltage lockout - (v) typ. min. max. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature (c) fault- low on resistance (ohms) typ. max. 0 50 100 150 200 250 10 12 14 16 18 20 v cc supply voltage (v) fault- low on resistance (ohms) max. typ. figure 35. v cc undervoltage (+) vs. temperature figure 36. v cc undervoltage (-) vs. temperature 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc undervoltage lockout + (v) typ. min. max. 6.0 7.0 8.0 9.0 10.0 11.0 -50 -25 0 25 50 75 100 125 temperature (c) v cc undervoltage lockout - (v) typ. min. max.
ir2130/ir2132(j)(s) & ( pbf) 18 www.irf.com figure 40a. amplifier input offset vs. temperature figure 40b. amplifier input offset vs. voltage 0 10 20 30 40 50 10 12 14 16 18 20 v cc supply voltage (v) amplifier input offset voltage (mv) max. 0 10 20 30 40 50 -50 -25 0 25 50 75 100 125 temperature (c) amplifier input offset voltage (mv) max. figure 39a. output sink current vs. temperature figure 39b. output sink current vs. voltage 0 150 300 450 600 750 -50 -25 0 25 50 75 100 125 temperature (c) output sink current (ma) min. typ. 0 125 250 375 500 625 750 10 12 14 16 18 20 v bias supply voltage (v) output sink current (ma) min. typ. figure 38a. output source current vs. temperature figure 38b. output source current vs. voltage 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature (c) output source current (ma) min. typ. 0 100 200 300 400 500 10 12 14 16 18 20 v bias supply voltage (v) output source current (ma) min. typ.
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 19 figure 43a. amplifier psrr vs. temperature figure 43b. amplifier psrr vs. voltage 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) amplifier psrr (db) typ. min. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) amplifier psrr (db) min. typ. figure 42a. amplifier cmrr vs. temperature figure 42b. amplifier cmrr vs. voltage 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) amplifier cmrr (db) typ. min. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) amplifier cmrr (db) min. typ. figure 41a. ca- input current vs. temperature figure 41b. ca- input current vs. voltage 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) ca- input bias current (na) max. 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) ca- input bias current (na) max.
ir2130/ir2132(j)(s) & ( pbf) 20 www.irf.com figure 46a. amplifier output source current vs. temperature figure 46b. amplifier output source current vs. voltage 0.0 2.0 4.0 6.0 8.0 10.0 10 12 14 16 18 20 v cc supply voltage (v) amplifier output source current (ma) typ. min. 0.0 2.0 4.0 6.0 8.0 10.0 -50 -25 0 25 50 75 100 125 temperature (c) amplifier output source current (ma) typ. min. figure 45a. amplifier low level output vs. temperature figure 45b. amplifier low level output vs. voltage 0 20 40 60 80 100 -50 -25 0 25 50 75 100 125 temperature (c) amplifier low level output voltage (mv) max. 0 20 40 60 80 100 10 12 14 16 18 20 v cc supply voltage (v) amplifier low level output voltage (mv) max. figure 44a. amplifier high level output vs. temperature figure 44b. amplifier high level output vs. voltage 4.50 4.80 5.10 5.40 5.70 6.00 -50 -25 0 25 50 75 100 125 temperature (c) amplifier high level output voltage (v) typ. min. max. 4.50 4.80 5.10 5.40 5.70 6.00 10 12 14 16 18 20 v cc supply voltage (v) amplifier high level output voltage (v) max. typ. min.
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 21 figure 49a. amplifier output l ow short circuit current vs. temperature figure 49b. amplifier output l ow short circuit current vs. voltage 0.0 3.0 6.0 9.0 12.0 15.0 10 12 14 16 18 20 v cc supply voltage (v) output low short circuit current (ma) max. typ. 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature (c) output low short circuit current (ma) typ. max. figure 48a. amplifier output high short circuit current vs. temperature figure 48b. amplifier output high short circuit current vs. voltage 0.0 3.0 6.0 9.0 12.0 15.0 -50 -25 0 25 50 75 100 125 temperature (c) output high short circuit current (ma) typ. max. 0.0 3.0 6.0 9.0 12.0 15.0 10 12 14 16 18 20 v cc supply voltage (v) output high short circuit current (ma) max. typ. figure 47a. amplifier output sink current vs. temperature figure 47b. amplifier output sink current vs. voltage 0.00 1.00 2.00 3.00 4.00 5.00 -50 -25 0 25 50 75 100 125 temperature (c) amplifier output sink current (ma) typ. min. 0.00 1.00 2.00 3.00 4.00 5.00 10 12 14 16 18 20 v cc supply voltage (v) amplifier output sink current (ma) typ. min.
ir2130/ir2132(j)(s) & ( pbf) 22 www.irf.com figure 53. ir2130/ir2132 t j vs. frequency (irf840) r gate = 15      , v cc = 15v figure 54. ir2130/ir2132 t j vs. frequency (irf450) r gate = 10      , v cc = 15v 20 40 60 80 100 1e+2 1e+3 1e+4 1e+5 frequency (hz) junction temperature (c) 320v 160v 0v 480v 20 40 60 80 100 120 140 1e+2 1e+3 1e+4 1e+5 frequency (hz) junction temperature (c) 320v 160v 0v 480v figure 51. ir2130/ir2132 t j vs. frequency (irf820) r gate = 33      , v cc = 15v figure 52. ir2130/ir2132 t j vs. frequency (irf830) r gate = 20      , v cc = 15v 20 25 30 35 40 45 50 1e+2 1e+3 1e+4 1e+5 frequency (hz) junction temperature (c) 320v 160v 0v 480v 20 25 30 35 40 45 50 1e+2 1e+3 1e+4 1e+5 frequency (hz) junction temperature (c) 320v 160v 0v 480v figure 50. maximum vs negative offset vs. v bs supply voltage -15.0 -12.0 -9.0 -6.0 -3.0 0.0 10 12 14 16 18 20 v bs floating supply voltage (v) v s offset supply voltage (v) typ.
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 23 figure 58. ir2130j/ir2132j t j vs. frequency (irgpc50kd2) r gate = 10      , v cc = 15v figure 55. ir2130j/ir2132j t j vs. frequency (irgpc20kd2) r gate = 33      , v cc = 15v figure 56. ir2130j/ir2132j t j vs. frequency (irgpc30kd2) r gate = 20      , v cc = 15v 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 jun cti on tem perat ure (c) 480v 160v 0v 320v frequency (hz) 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 juncti on tem perature (c ) 480v 320v 0v 160 frequency (hz) 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 juncti o n t e m p e ra tu re (c ) 480v 160v 320v 0v frequency (hz) figure 57. ir2130j/ir2132j t j vs. frequency (irgpc40kd2) r gate = 15      , v cc = 15v 20 30 40 50 60 70 80 90 100 110 120 1e+2 1e+3 1e+4 1e+5 ju nc t i on tem perat ure (c) 480v 160v 320v 0v frequency (hz)
ir2130/ir2132(j)(s) & ( pbf) 24 www.irf.com 28-lead pdip (wide body) 01-6011 01-3024 02 (ms-011ab) case outlines 01-6013 01-304002 (ms-013ae) 28-lead soic (wide body)
ir2130/ir2132(j)(s) & ( pbf) www.irf.com 25 01-6009 00 01-3004 02(mod. ) (ms-018ac) 44-lead plcc w/o 12 leads notes case outline
ir2130/ir2132(j)(s) & ( pbf) 26 www.irf.com leadfree part marking information order information basic part (non-lead free) 28-lead pdip ir2130 order ir2130 28-lead soic ir2130s order ir2130s 28-lead pdip ir2132 order ir2132 28-lead soic ir2132s order ir2132s 44-lead plcc ir2130j order ir2130j 44-lead plcc ir2132j order ir2132j leadfree part 28-lead pdip ir2130 order ir2130pbf 28-lead soic ir2130s order ir2130spbf 28-lead pdip ir2132 order ir2132pbf 28-lead soic ir2132s order IR2132SPBF 44-lead plcc ir2130j order ir2130jpbf 44-lead plcc ir2132j order ir2132jpbf lead free released non-lead free released part number date code irxxxxxx yww? ?xxxx pin 1 identifier ir logo lot code (prod mode - 4 digit spn code) assembly site code per scop 200-002 p ? marking code ir world headquarters: 233 kansas st., el segundo, california 90245 tel: (310) 252-7105 this product has been qualified per industrial level data and specifications subject to change without notice. 4/2/2004


▲Up To Search▲   

 
Price & Availability of IR2132SPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X